

Available online at www.sciencedirect.com

Journal of Hazardous Materials

Journal of Hazardous Materials 149 (2007) 246

Erratum

www.elsevier.com/locate/jhazmat

Erratum to "Large hydrocarbon fuel pool fires: Physical characteristics and thermal emission variations with height" [J. Hazard. Mater. 140 (2007) 280–292]

Phani Raj*

Technology & Management Systems Inc., 102 Drake Road, Burlington, MA 01803-1839, United States

Received 26 June 2007; received in revised form 16 July 2007; accepted 17 July 2007

Available online 22 July 2007

Item	Page	As currently printed	Corrected equation or statement
1	285	$\psi = \frac{L_{\rm C}}{L_{\rm F}} = \left(1 - \frac{L_{\rm l}}{L_{\rm F}}\right) = 0.75 + \log_{10}(F_{\rm c}^{1/4}) \tag{5}$	$\psi = \frac{L_{\rm C}}{L_{\rm F}} = \left(1 - \frac{L_{\rm l}}{L_{\rm F}}\right) = 0.7 + \log_{10}(F_{\rm c}^{1/4}) \tag{5}$
2	285	length ($L_{\rm C}$) to be zero for $F_{\rm C} = 10^{-3}$ (which, for a LNG fire on water will be of the order of 3000 m in diameter).	length ($L_{\rm C}$) to be zero for $F_{\rm C} = 1.585 \times 10^{-3}$ (representing a LNG fire on water of the order of 2000 m in diameter).
3	286	Using Eqs. (4) and (5) it can be shown that,	The value of ψ is determined using Eq. (5). The value of ψ , for LNG pool fires on water, ranges, approximately, from 0.3 (for 15 m diameter) to 0.1 (for 350 m diameter).
		$\psi = (L_C/L_F) = 0.75 + 0.25 \log_{10}(F_C).$ (12b) The value of ψ for fires of several meters in diameter is generally between 0.15 and 0.25	

DOI of original article:10.1016/j.jhazmat.2006.08.057.

^{*} Tel.: +1 781 229 6119.

E-mail address: tmsinc1981@Verizon.net.

^{0304-3894/\$ –} see front matter 0 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.jhazmat.2007.07.051